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Models in ics — Outline

Kinematic Model

inemati dies of motion of bodies and systems based only on geometry, i.e.
without considering the physical properties and the forces acting on them. The
essential concept is a pose (position and orientation).

® Dynamic Models
Dynamics studies the relationship between the forces and moments acting on a
robot and accelerations they produce,

@ Geometric Models
Geometry: Mathematical description of the shape of bodies
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Kinematic Model (1) ﬂ(IT

Karlsruhe Institute of Technology
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Kinematic Model (2) %: %)

Two spaces

Joint space /
Configuration space (C)

3

L=

Task space /
Workspace (W)
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Kinematic Model (3)

Definition
The kinematic model of a robot describes the relationships between

the joint space (robot coordinates, configuration space) and
the space of end effector poses in world coordinates (task space, Cartesian space).

Areas of application
Relationship between joint angles and poses of the end effector

Reachability analysis
Geometric relation between the body parts of the robot (self-collision)
Geometric relation to the environment (collision detection)

b
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Forward Kinematics ﬂ(IT

Karlsruhe Institute of Technology

® Direct kinematics problem
® |nput: Joint angles of the robot
® Output: Pose of the end effector
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Inverse Kinematics ﬂ(IT

Karlsruhe Institute of Technology

® Inverse kinematics problem

® Input: Target pose of the end effector
® Output: Joint angles
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Outline: Direct and Inverse Kinematics

Joint space
(configuration space)

..,0,) €EC g
—_—

(61,

n: Joint degrees of freedom (DoF)
m: Cartesian degrees of freedom
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Transformation

Direct Kinematics

= f(6
x f(,\)

N

Inverse Kinematics
0 = (x)

SKIT
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Cartesian coordinates
(task space)

N

x &)

Position and orientation of
the end effector

XEEF = (x,y,z, a;ﬁ; )/)

A
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Elements of a Kinematic Chain

r'

Arm elements
(links, segments)

D,
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Kinematic Chain: Definition

Definition:
A kinematic chain is formed by several bodies that are kinematically
connected by joints (e.g. robot arm).

Types: Q
VAN AN
Open kinematic chain Closed kinematic chain

k &
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Kinematic Chain: Conventions

@ Each arm element corresponds to one rigid body.

® Each arm element is connected to the next one
by a joint.

® For prismatic and rotational joints:
Each joint has only one degree of freedom
(translation respectively rotation).

® Kinematic parameters:

® Joint definition (e.g. rotation axis)

® Transformation between joints

D,
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Kinematic Parameters

Joint parameters
Revolute joint: rotation axis
Prismatic joint: direction of translation

Specification of the positions of joints relative
to each other

Fixed transformation between two joints \ g\

Defines the local coordinate systems of the joints

Transformation from joint i — 1 to joint i with
transformation matrix *~17;

b
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Number of Parameters of the Kinematic Chain
A transformation must be determined for each link:

3 rotation parameters
3 translation parameters

=>» 6 parameters per link of the kinematic chain

b
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Denavit-Hartenberg (DH) Convention

Goal: Reduction of the parameters for describing an arm element

Properties
Systematic description of relations (translations and rotations)
between adjacent joints '/
Reduction of the number of parameters from 6 to 4 eI N
Description with homogeneous matrices \ /

Literature: Denavit, Hartenberg: , A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices”,
Journal of Applied Mechanics, 1955, vol 77, pp 215-221

b
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DH Convention for the Choice of Coordinate Systems

® Each coordinate system is determined on the basis of the following three rules:
1.  The z;_;-axis lies along the axis of movement of the i-th joint

2. The x;-axis lies along the common normal of z;_; and z;
(direction via cross product: x; = z;_1 X z;)
3.  The y;-axis completes the coordinate system according to the right-hand rule

[ € {base, 1,...,n}
- Derivation of parameters for arm element and joint

@ Remark
@ Other variants of the DH convention can also be found in the literature
@ In this lecture we consider the modified variant of Waldron and Paul

19 Robotics I: Introduction to Robotics | Chapter 2



DH Convention: Parameters of the Arm Element (1) ﬂ(IT

@ Each arm element i is embedded between two jointsi and i + 1
® 7z; runs along the jointaxis i + 1

jointi+1

D,
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DH Convention: Parameters of the Arm Element (2)

® Link length a; of an arm element i describes the distance from z;_; to z;
W x; lies along the normal of z;_; and z; (cross product)
jointi+1

D,
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DH Convention: Parameters of the Arm Element (3) ﬂ(IT

N describes the angle from z;_; to z; around Xx;.

jointi+1

D,
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DH Convention: Parameters of the Arm Element (4) ﬂ(IT

N is the distance between x;_;-axis and x; -axis
along the z;_,-axis

jointi+1

D,
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DH Convention: Parameters of the Arm Element (5) ﬂ(IT

® Joint angle 6; is the angle from x;_; to x; around z;_4

D,
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DH Parameters

@ The four parameters a; , a; , d; and 6; are called DH parameters.

® They describe the transformations between two successive
rotational or translational robot joints

25 Robotics I: Introduction to Robotics | Chapter 2
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DH Parameters (Denavit-Hartenberg Parameters)
Parameter Symbol Revolute joint Prismatic joint
Link length a constant constant
Link twist a constant constant
Link offset d constant variable
Joint angle 0 variable constant
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Transformation Between Two Robot Joints

27 Robotics I: Introduction to Robotics | Chapter 2
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DH Transformation Matrices (1)

Transformation from LCS;_1 to LCS;

1. Arotation 6; around the Zi_q

Z; _4-axis so that the x;_;-axis cosg; —sinf; 00
i—1" i-1” _ Yi-1 sinf; cos8; 0 O
is parallel to the x;-axis. S Rz ,(6) = 0 l 0 l 1 0
Xi-1 »
0; 0 0 0 1
2. Atranslation d; along the YZ;_q
Z;_41-axis to the point where L,,v
Z;_1 and x; intersect. N 1 0 0 O
di| 4z T, @)=9 1 Y0
-1 Zl—l( l) 0 0 1 di
0O 0 0 1
Xi

LCS;: Local Coordinate System of joint i

28 Robotics I: Introduction to Robotics | Chapter 2
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DH Transformation Matrices (2)

Transformation from LCS;_, to LCS;

3. Atranslation g; along the

x;-axis to align the origins T 1 0 0 a
of the coordinate systems. - T (a) = 01 0 O
Sa ki Yl o 00100
a;
4.  Arotation ; around the 000 1
. Xi
x;-axis to convert the
Z;_q-axis into the z;-axis.
a; 4 27 1 0 0 0
e N_[|0 cosa; —sine; O
Zi Ry (@) 0 sinaq; cosa; O
X; 0 0 0 1

LCS;: Local Coordinate System of joint i
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DH Transformation Matrices (3) S(IT

Transformation LCS;_1 to LCS;

30 Robotics I: Introduction to Robotics | Chapter 2 - HﬁT




Inverse DH Transformation S(IT

Transformation from LCS;_1 to LCS;

Ny 0y Gy Uy n, n, n, —-n'u
Ny 0y Ay Uy
nZ OZ aZ uZ
0 0 0 1

T = Ox Oy 0z —OU See chapter 1

a, a, a, —au
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Concatenation of DH Transformations Q(IT

@ By concatenating the DH matrices, the pose of individual coordinate systems
relative to the reference coordinate system can be determined.

@ Position of the m-th coordinate system relative to the base:

@ This is a mapping of the configuration space C ¢ R™ to the workspace W c R™

b
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DH Parameters — Notes

@ The four parameters a; , a; , d; and 6; are called DH parameters.

® Important: Reference coordinate system (RCS) and end effector coordinate
system (ECS) of the kinematic chain

® As intuitive as possible; set so that the associated
DH parameters are simple (preferably zero)

® RCS as the coordinate system of the first joint
in zero position

® End effector coordinate system at an
‘important reference point’ at the end effector

X7
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Summary: Determination of the DH Parameters ﬂ(IT

Sketch of the manipulator

Identify and enumerate the joints (1, ..., last link =n)
Draw the axes z;_, for each joint i

Determine the parameters a; between z;_;and z;

Draw the x;—axes

Determine the parameters «; (twist around the x;-axes)
Determine the parameters d; (link offset)

Determine the angles 6; around the z;_;-axes

Compose the joint transformation matrices 4;_ ;

O 00 N O U WN R

b
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Direct Kinematics Problem (1) ﬂ(IT

® Direct kinematics problem
® |nput: Joint angles of the robot
® Output: Pose of the end effector

36 Robotics I: Introduction to Robotics | Chapter 2
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Direct Kinematics Problem (2)

B The pose of the end effector (EEF) is to be determined from
the DH parameters and the joint angles.

B The pose of the end effector (EEF) in relation to the RCS is given by:
Sbase EEF(Q) — AO 1(91) Al 2(92) . n 2,n— 1(971 1) An 1n(6n)
~ ( R t)
0" 1

® Joint angles 84, ..., 0,, are given = The pose of the EEF is obtained from the
equation above by inserting the joint angle values.

. b
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Example 1: Planar Robot (in xy-Plane)

Bruno Siciliano

Lorenzo Sciavicco
[4] Luigi Villani
3 Giuseppe Oriolo
P L\
7 J =i\
) 4

Robonc9

Modelling, Planning and Control

aNIS53308d 1UNSIG ONU 10HLINO] NI SHODBLHI| O3aNENOY

_________________________

(. >
N~ Xo Pwx Px
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Example 1: Planar Robot 7-axes are paralle —\\J(IT

NO tra nslation in Z_direction Karlsruhe Institute of Technology

Joint a; a; d; 0;
1 a, 0 0 0,
2 a, 0 0 0,
3 as 0 0 03

cosf; —sinf;-cosa; sinf;-sina; a;-cosb;

A= sinf; cos6; -cosa; —cosbh;-sina; a;-sin6;
= 0 sin a; cos a; d;
0 0 0 1

_________________________

o= O O

Ci —S;
Si G
0 0
0 0

40 Roboatics I: Introduction to Robotics | Chapter 2



SKIT

Example 1: Planar Robot
AO 3(0) — AO 1° Al 2 ° AZ 3 = 5123 C123 O alsl + a2512 + a35123
' ’ ' ' 0 0 1 0
L 0 0 0 1

Abbreviations: ¢;,3 = cos(6; + 0, + 63), s1,3 = sin(6; + 6, + 63), etc.

. b
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Example 2: 3D Robot

Z3

Joint

kS

SKIT

Karlsruhe Institute of Technology

o O O

L O OO

cosf; —sinf;-cosa; sinf;-sina; a;-cosb;
4 _ |sin6; cos6; -cosa; —cosB;-sina; a;-sinb;
1= i
0 sin ; cos a; d;

0 0 0 1
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Example 2: 3D Ro?ot ﬂ(IT

z 23

Joint a; ; d, 0;
1 0 —90 O 0,
2 0 90 d, 0,
3 0 0 d, 0
_cz 0 S, 0 ]

Ay, = 0 1 0 d,

0 0 0 1

. b
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Example 2: 3D Rotgot ﬂ(IT

z Z3

Joint a; ; d, 0;
1 0 —90 O 04
2 0 90 d, 0,
3 0 0 d, 0
1 0 0 0|

0 1 0 0

A2'3 |0 0 1 d,
0 0 0 1

. b
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Example 2: 3D Robot —\\J(IT

Karlsruhe Institute of Technology

C1C; —S1 C1Sz C1Spd3 — S1dy]
S51C C S4So S1S,d~ + cd
Ag3(0) =Ag1 A5 Ayg = 1%2 1 1°2 19243 1>
) ) ) ) _SZ O CZ C2d3
L0 0 0 1 |
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DH Notation: Arm of ARMAR-I ﬂ(IT
01

N T A e
1 0, 30 —90 0

2 0,-90 0 —90 0
3 05 + 90 0 90 2235
4 0, 0 —90 0
5 0 0 90 270
6 O + 90 0 —90 0
7 0, 140 90 0

Robatics I: Introduction to Robotics | Chapter 2
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Forward Kinematics (1)

| Given: 0, A;_1;(6)
® Desired: Sbase,EEF(H)

Ai_1;(0) =R, _(0) T,  (d) Tyx(a;) - Ry(a;)

(cosO; —sinf;-cosa; sin@;-sina; a;-cos0;]
__|sinf; cosB; -cosa; —cos@;-sina; a;-sinb;
B 0 sin a; COS & d;

0 0 0 1

SbaseEEF(e) —AO 1(91) A12(92) . n 2,n— 1(871 1) An 1n(6n)
(R t
_(OT 1)

. b
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Forward Kinematics (2) e o e

@ Pose of the end effector coordinate system relative to the base:
Sbase EEF(H) - AO 1(91) A12(92) . n 2,n— 1(971 1) An 1n(9n)

® This is a mapping of the configuration space C € R" to
the workspace W c R™

R™ - R™: x = f(0)

. b
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Derivation of the Forward Kinematics
® Forward Kinematics: Joint angle position — end effector pose
R™ - R™: x(t) = f(0(t))
/ \

Pose of the EEF in W Joint angle vector in C

® How do the corresponding relationships look like?
® Joint angular velocities — end effector velocities
® Joint torques — end effector forces and torques

@ Approach: Derive forward kinematics — Jacobian matrix

b
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Reminder: Jacobian Matrix

® Given a differentiable function f1(x)
i.e. f(x) = :
18 O R VRS

® The Jacobian Matrix contains all first-order partial derivatives of f.
Fora € R™:

df1 0f1
; axl( ) axn( )
Jr(a) = <—l( )) = af fs € R™X"
N 0xq o, @ dx, ox, W

fi, .-, fm denote the component functions of f and x4, ..., x,, the coordinates in R".

. b
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Jacobian Matrix in Forward Kinematics ﬂ(IT

Karlsruhe Institute of Technology

® Problem: Forward kinematics is matrix-valued (n: number of joints)
f: R™ - SE(3)

= Jacobian matrix not defined

@ Solution: Select vector representation,
e.g. use roll, pitch and yaw angles to represent orientations

f: R" > R® -

X DINK R

Robatics I: Introduction to Robotics | Chapter 2
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End Effector Velocities

® Assumption: The kinematic chain moves along a trajectory
6:R - R"

® Pose of the end effector x(t) € R® at time t:

x(t) = f(6(1))
B The end effector velocity depends linearly on the joint velocities (chain rule):

If (6(t)) _9f(6(t)) 09(0

== = = Jr(6(0) - 6(t)

x(t) =

< &
53 Robatics I: Introduction to Robotics | Chapter 2 H2T



End Effector Velocities —\\J(IT

Karlsruhe Institute of Technology

® The Jacobian matrix relates Cartesian end effector velocities to joint angle
velocities

x(t) = Jr(6(D)) - 6(t)

@ The following problems can be solved with this relation:

® Forward kinematics in the velocity space:
Given joint angle velocities,
which Cartesian end effector velocities are realized?

® Inverse kinematics in the velocity space:
Given Cartesian end effector velocities,
which joint angle velocities are necessary to realize them?

54 Robatics I: Introduction to Robotics | Chapter 2
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Kinematics using the Jacobian Matrix (1)
@ Forward kinematics:

Given the joint angle velocities 6(t),
which Cartesian end effector velocities x(t) are realized?

® Insert 6(t):

x(©) = J,(60)) - 6(0)

. b
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Kinematics using the Jacobian Matrix (2)

Inverse kinematics:
Given a Cartesian end effector velocities x(t),
which joint angle velocities @(t) are necessary to realize them?

x(t) =Jr(6@)) - 6(t)
JFHe@®) -1 1

B(t) = 71 (8(0)) - %(t)

Robatics I: Introduction to Robotics | Chapter 2
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Forces and Torques at the End Effector ﬂ(IT

Karlsruhe Institute of Technology

B Assumption: The kinematic chain moves along a trajectory
6:R-> R"

® The work done (force - distance) must remain constant regardless of the

reference system (friction neglected)
ty

j 29’(1:)T t()dt=W = | x(@®)T-F(t)dt
tq ty

® With:
6(t): R - R", Joint velocities
7(t): R - R", Jointtorques
x(t): R » R®, End effector velocities
F(t): R > R®, Force-torque vector at the end effector

Robatics I: Introduction to Robotics | Chapter 2
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Forces and Torques at the End Effector
tz t2
j )T -t(t)dt =W = x(t)T - F(t)dt
tl tl

® The relation must apply for each time interval [t4, t;], therefore:
o))" -1(t) = ()T - F(¢t)

® Known relation between end effector velocity and Jacobian matrix:
O () = 0O - JF(6(1) -F(t) | *#®=J;(6() 6@

® Since 6(t) is arbitrary, it follows that:
w(t) = JF(6(®) - F(t)

. b
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Forces and Torques at the End Effector

@ The Jacobian matrix relates forces and torques at the end effector to the
torques in the joints:

©(t) = JF(6(D) - F(¢)

@ The following problems can be solved with this relation:

W Given forces/torques at the end effector,
which torques must act in the joints to resist this force?

® Given the torques in the joints,
which resulting forces and torques act on the (fixed) end-effector?

. b
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Recap — DH Transformation Matrices S(IT

Transformation from LCS;_; to LCS;

60 Robotics I: Introduction to Robotics | Chapter 2 - HﬁT
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Recap — Direct and Inverse Kinematics
Joint angle space Transformation Cartesian coordinates
(configuration space) (workspace)

Direct Kinematics

/ x = £(6) \

0y, ...,6,) €CCR" X c R™

\ Inverse Kinematics /
E.g. position and orientation

0=Ff1(x
G of the end effector
Xger = (X,y,z,a,6,7)

n: Joint degrees of freedom (DoF)
m: Cartesian degrees of freedom

61 Robotics I: Introduction to Robotics | Chapter 2




Recap — Jacobian Matrix

of;
1:(6) = (a—(’;j(m) _
i,j

x=(x,y,z,apB, )" € R"°and 8 € R*

x = f(6)

x=J:(0)-6

']

0fi
Jy(6) = (% (9)) -
J l

62 Robotics I: Introduction to Robotics | Chapter 2

df1
20, (6)

of
20, )

dx

90, (6)

90, (6)

' E(Q)

Karlsruhe Institute of Technology

0f1

: ﬁ(e)

n

: (= Rmxn
0fm

' E(e)

0x

ﬁ (9) = ]R6><n
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Recap — Jacobian Matrix

@ Velocity space
¥ =J;(6()) - 6(0)

® Force space

o(t) = JE(6(D) - F(t)

< &
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Calculation of the Jacobian Matrix

® Each column of the Jacobian matrix corresponds to a joint 6; of the kinematic chain

]f=<i . af)e]RmX"

90, " 20
aglw) )
fl 1
Jr(8) = (— (9)) = o " € R™*"
\Tre - e

® Approach:
The numerical calculation of the Jacobian matrix is carried out column by column
= joint by joint

. b
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Geometric Calculation of the Jacobian Matrix
x = f(9) x=(xyzapBy) € R"™°and g € R"=°
x=](6)-6
/x'\ J11 J12 j16\ 61\
y J21 J22 J26 6_’2
z J31  J32 J36 03 v .
=17 _ _ =1 . = = 0),/,0),..,].(0))- -6
Sl =l () = (2(6).)2(8), .. Js(8))
\'B_) Js1 Js2 j56/ O
4 Je1 Jez Jes 96/

. b
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Geometric Calculation of the Jacobian Matrix "\\J(IT

1. Case: Prismatic joint
® Assumption: The j-th joint performs a translation in direction of the unit vector z; € R3.

af (0) [Zj
d0; 0

@ [t follows:

J;j(68) = ] € R®

2. Case: Revolute joint
B Assumption: The j-th joint performs a rotation around the axis z; € R? at the position p; € R>.

df (0) [,-X (f(8) —Pj)]
d0; Zj

@ [t follows:

€ R®

Ji(0) =

Roboatics I: Introduction to Robotics | Chapter 2
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Geometric Calculation of the Jacobian Matrix

2. Case: Revolute joint

Ji(6) =

® Manipulator with n joints

zo X (f(0) —po) 2z X (f(0) —p1)

Zy Zq

J(8) =

Robatics I: Introduction to Robotics | Chapter 2
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€ R°

Z,_1 X (f(0) — pn_l)]
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Summary: Jacobian Matrix

® Forward kinematics:
fi R" > R® f(0)=x=(xy20a/pf7)

_(9F O\ _ pexn
p (. Den

® Jacobian matrix:

® Properties:

® J; describes the relations between

® Joint angle velocities (n-dimensional)
and end effector velocities (6-dimensional)

® Joint torques (n-dimensional)
and forces and torques at the end effector (6-dimensional)

® The Jacobian matrix depends on the joint angle configuration

< &
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Jacobian Matrix: Example (1)

® Manipulator with two joints 6, 6,

® Find x

69 Robatics I: Introduction to Robotics | Chapter 2




Jacobian Matrix: Example (2)

® Forward kinematics x = f(0)
x1\ (61
<x2> =/ <92>
@ Velocity of the end effector

x=J:(0)-0
i) 6,
<’52> = s <92>
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Jacobian Matrix: Example (3)
® Forward kinematics

x; = LycosB; + L,cos(6; +6,) <x1> iy <91>
x, = Lysin@; + L,sin(6, + 6,)

X2 A
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Jacobian Matrix: Example (4) "\\J(IT

® Forward kinematics
x; = Ly cos6; + L, cos(6; + 6,)
X, = Lysinf; + L, sin(6; + 0,)
® Derivation

x1 = _ngl Sin 91 LZ (91 + 92) Sin(91 + 02)
X, = L16;1cos0; + Ly(0; + 6,) cos(0; + 6,)
® Jacobian matrix

<x1> _ <_L1 Sin 01 — Lz Sin(91 + 02) _Lz Sin(91 + 02)) <01>

X L,cos6; + L,cos(6;+6,) L,cos(6;+0,)
\ J U J
' Y
J1(6) J2(60)

. b
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Jacobian Matrix: Example (5)

End effector velocity

Veer = J1(0)0; + J2(0)6,
As long as J;(0) and J,(0) are not linearly dependent,
Vger Can be generated in any direction in the x;x,-plane.

(xl) _ <—L1 sin 91 - Lz Sin(91 + 92) _LZ Sin(91 + 02)) <91>

Singularities %2) ~ \ Lycosby +Lycos(8; +0,)  Lycos(6, +6,) J\6,
J1(6) and J>(6) linearly dependent ()< (hines - zse) —1s ano) )
— J(8) becomes singular %,) =\ Ly cosfy + Ly cos(8;)  Lycos(8y) ) \é,
. N
E.g.if6, =0° — (L, +Ly)sin6, —Lysinf,
(Ly +Ly) cosf;  L,cosb,

The possible movements of the end effector are restricted.
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Recap — Jacobian Matrix

@ Velocity space
¥ =J;(6()) - 6(0)

® Force space

o(t) = JE(6(D) - F(t)

. b
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Kinematic Singularities

B If a robot is in a configuration Oy, gy14r € C in Which it is no longer able to
move instantaneously in one or more directions, this is referred to as a
kinematic singularity.

® Configurations O, 4414+ € C that lead to a kinematic singularity are called
singular.

B Can we distinguish singular from non-singular configurations?
— Via the Jacobian matrix

There is no joint angular velocity that generates
an end effector velocity in the red direction.
= The configuration is singular.
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Kinematic Singularities: Example

Forward kinematics: x = f(8) = (ll +€os 6y + 15 - cos(6; + 92)>

ll - Sin 91 + lz . Sin(91 + 02)
_ll - Sin 01 - lz . Sin(91 + 82) _lz . Sil’l(@l + 92))

Jacobian matrix:  J(6) = ( l; -cosf; + 1, -cos(8;+6,) I, cos(6;+6,)

z AT
For the singular configuration 8 = (Z’ 0) ;

Iy + 1) . [ 1

TC —\u 2) T = 2T = y 1‘
J <( é4>> =J1.J2) = 1/5 1/5 R

L+l) — 1 —

(1 2) \/E 2 \/E
The first and second column are linearly dependent

I+ 1,
1= I "J2
2
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Kinematic Singularities: Jacobian Matrix (1)

Forward kinematics in the velocity space:
The end effector velocity is a linear combination of the columns of the

Jacobian matrix.

1O = (50 35 = 357) = UnJz )

£=(6) 6 |
6,

K= Ui o) | %2 | =00 b0 +J0 64+, 6y
On

b
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Kinematic Singularities: Jacobian Matrix (2)

The end effector velocity is a linear combination of the columns of the Jacobian matrix.
X=J1 61+]y 0+ +]n 0, J(0) = U1z - Jn)

If a robot is in a configuration @, gy14 € C in Which it is no longer able to move
instantaneously in one or more directions, this is referred to as a kinematic singularity.

In mathematical terms, kinematic singularity means that the linear combination of
Jacobian columns does not span the entire end effector velocity space.

The Jacobian matrix J(8) has a rank smaller than the workspace dimension.

rank J(0) < m, x € R™
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Kinematic Singularities: Definition

Given a forward kinematics function f

x=f(0), O€CcR', xeWcR™

and the corresponding Jacobian matrix

_ (% o Y ¢ grxn
](0) - (601’ 602’ L | aen) E ]R )

a configuration By oy1ar € C is called singular if the rank of the Jacobian matrix
is smaller than the dimension of the workspace.

rank /(@) < m

. b
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Singularities

& Definition:
A kinematic chain is in a singular configuration if the associated Jacobian matrix
is not of full rank, i.e. two or more columns of /(@) are linearly dependent.

® A singular Jacobian matrix cannot be inverted %'
= Certain end effector movements are impossible .

B In the vicinity of singularities, large joint velocities &
may be necessary to maintain an end effector velocity. (

b
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Manipulability

® Manipulability: Measure of the freedom of movement of the end effector;
also how ‘close’ a configuration is to a singularity

® Manipulability ellipsoid
® Describes the end effector velocities for joint angle velocities with ||0|| =1

® Use J(0) to map the unit circle of joint angle velocities to the space of end effector velocities. *2

® Result: Manipulability ellipsoid

® Depends on joint angle configuration — = »561
® Analysis 62 1(64) o ‘ES

® Circle (‘large ellipsoid’):

End effector movement is possible without restriction : » X2
in any direction. 01 il
® Degenerate cases (compressed ellipsoid): 1(62) . 1 >
End effector movement is restricted in certain directions. L— *1
@—
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Manipulability: Eigenvalue Analysis

® Calculate A(0) = J(0) - J(6)T € Rm*m
B A(O)is
® Quadratic
® Symmetric
B Positive definite
¥ Invertible
® Eigenvalues A; and Eigenvectors v; of A
B Av; = 4v;
" (4 —Av; =0

@ Singular values

Io‘iz\//l_i

Robatics I: Introduction to Robotics | Chapter 2
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Volume V is proportional to
Vs Ay = {/det(A) = \/det(JJT)

U

Vq

\ _

>

Manipulability ellipsoid:
Geometric representation of the manipulability




Manipulability: Calculation

@ Scalar measures for manipulability
® Smallest singular value

11(0) = omin(A(0))

Omin (A(H))

B Inverse condition

Hx(0) =

Umax (A (0))

u3(6) = det A(0)

@ Determinant
® Application:

® Analysis of joint angle configurations
® Singularity avoidance
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Force Ellipsoid

(@) =JF(6() - F(t) - F(t) =J77(6(0) - ()

f2

fi
T 4 J7T(61)

fZ A

o

< &
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Manipulability and Force Ellipsoid

.')'CZ fZ

Xy f

/T\ - /T\ -
> X2 : > f2
\J/ 2 \l/ "

} >

J(62) % J7T(62)

f
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Manipulability — Examples
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Joint Angle Limits ﬂ(IT

Karlsruhe Institute of Technology

® A robot with the configuration space C c R" generally only covers part of the
underlying R™ as there are joint angle limits.

® There is a minimum and maximum value for each joint
0 =(64,0,,..,0,) €EC
0; € |6 min, 0i max]
B Exception: Continuous rotation joints (ARMAR-6)

® Joint angle limits restrict the reachable part of the workspace
Wreachable CWc ]R6

. b
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Representation of Reachability (1)

@ Reachable part of the workspace of the
robot in R®

@ Approximation using a 6-dimensional grid
® Entry in each grid cell:

® Reachability:
Binary: Is there at least one joint angle
configuration so that the Tool Center Point
(TCP) lies within the 6D grid cell?

® Manipulability:
Maximum manipulability value of a grid cell,

e.g. U ((9) Visualization of reachability and
Vahrenkamp, N., Asfour, T. and Dillmann, R., Efficient Inverse Kinematics Computation based on mampUIablllty for the ARMAR-6
and ARMAR-III robots

Reachability Analysis, International Journal of Humanoid Robotics (IJHR), vol. 9, no. 4, 2012

b
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Representation of Reachability (2)

@ Generation

® Offline process in simulation

® Check all joint angles
® inx steps (e.g. x=5°)
® Determine the pose of the TCP using forward kinematics

® Determine the grid cell and set the entry

@ Application

® Pre-calculated reachability information

® Quick decision whether a pose is reachable with the end effector.

Effort: O(1) Grasps that cannot be
. reached can be efficientl
® Can be used for grasp selection sorted out. Y

b
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Geometric Model: Motivation (1) ﬂ(IT

® Collision and contact calculation

Grasping Motion planning

D,
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Geometric Model: Motivation (2)
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Geometric Model: Motivation (3)

® Simulation

Imitation
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Geometric Model

Application

® Graphical representation of bodies
(visualization)

B Starting point for distance measurements
and collision detection

@ Basis for calculating the movements of bodies

W Basis for determining the acting forces and
torques
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Geometric Model: Classification

B Classification according to spaces
® 2D models
® 3D models

B Classification according to basic primitives
@ Edge or wireframe models
@ Surface models
® Volume models
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® The bodies are represented by bounding boxes.

® Used in the first steps of collision avoidance.

® Class: 3D, volumes or surfaces

ARMAR-III block world model

b
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Edge Model

The bodies are represented by polygons (edges).

Used for quick visualization.

Class: 3D, edges or surfaces

ARMAR-6 head model
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Volume Model

B The bodies are represented accurately.
B Precise collision detection possible.
W Used for displaying animations.

® Class: 3D, volume

ARMAR-6 head model ARMAR-IIl volume model

D,
100 Robotics I: Introduction to Robotics | Chapter 2 . H2T

‘‘‘‘‘‘‘‘‘‘‘‘‘‘




SKIT

Collision Model

@ The bodies are represented in simplified form.

® Fast collision detection possible
e/
W Class: 3D, volume ! & .
ARMAR-6 collision model ARMAR-III collision model

D,
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Kinematic model

Denavit-Hartenberg convention: Minimum number of parameters to describe
transformation between consecutive joints

Direct kinematics problem: Calculate end-effector pose from joint angles
Jacobian matrix: The solution for everything ©
Singularities and manipulability
Reachability
Geometric model

Classification according to space (2D/3D) and basic primitives (edge or wireframe
models, surface models and volume models)
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